National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Post-transcriptional regulation of TbIF1 in life cycle of Trypanosoma brucei
GRATZL, Sascha
TbIF1, a protein Inhibitor of F1-ATPase in Trypanosoma brucei, is expressed exclusively in the insect stage of the parasite. In the bloodstream form, TbIF1 is switched off, because its activity interferes with the essential role of the ATP synthase in the maintenance of the mitochondrial membrane potential. Here, we employ a series of reporter genes to study the impact of 3'UTR of TbIF1 on mRNA stability and translatability to get insight into the tight post-transcriptional control of TbIF1. We provide evidence that developmentally regulated RNA binding protein Rbp10 is critical for downregulation of TbIF1 on translation level in bloodstream-form trypanosomes.
Messenger RNA stability and microRNA activity in mouse oocytes
Flemr, Matyáš ; Svoboda, Petr (advisor) ; Motlík, Jan (referee) ; Hampl, Aleš (referee)
The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical...
Messenger RNA stability and microRNA activity in mouse oocytes
Flemr, Matyáš ; Svoboda, Petr (advisor) ; Motlík, Jan (referee) ; Hampl, Aleš (referee)
The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.